Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution set of inequality (2x/x2 - 9) ≤ (1/x + 2 ) is
Q. The solution set of inequality
x
2
−
9
2
x
≤
x
+
2
1
is
3882
164
Linear Inequalities
Report Error
A
(
−
∞
−
2
)
∪
(
3
,
∞
)
16%
B
(
−
∞
,
−
3
)
∪
(
−
2
,
3
)
31%
C
(
−
3
,
0
]
∪
(
3
,
∞
)
27%
D
none of these
27%
Solution:
We have
x
2
−
9
=
0
and
x
+
2
=
0
and
x
2
−
9
2
x
−
x
+
2
1
≤
0
⇒
(
x
+
2
)
(
x
2
−
9
)
2
x
2
+
4
x
−
x
2
+
9
≤
0
⇒
(
x
+
2
)
(
x
2
−
9
)
x
2
+
4
x
+
9
≤
0
⇒
(
x
+
2
)
(
x
+
3
)
(
x
−
3
)
<
0
(
∵
x
2
+
4
x
+
9
>
0
∀
x
∈
R
)
From the wavy curve shown, we have
x
∈
(
−
∞
,
−
2
)
∪
(
−
2
,
3
)