Q.
The solution of the inequality log1625−x2(1424−2x−x2)>1 is
291
104
Continuity and Differentiability
Report Error
Solution:
Case-I: If 1625−x2>1⇒x2<9⇒−3<x<3 ∴1424−2x−x2>1625−x2 or x2+16x−17<0 ⇒−17<x<1∴ from (1),x∈(−3,1) Case-II: 0<1625−x2<1;∴0<1424−2x−x2<1625−x2 ∴0<1625−x2<1 and 0<1424−2x−x2<1625−x2 ⇒9<x2<25⇒x2+2x−24<0 and x2+16x−17>0 ⇒−5<x<−3,3<x<5⇒−6<x<4 and x<−17,x>1 ⇒3<x<4….(3)⇒1<x<4 from (2), (3) we get x∈(−3,1)∪(3,4)