Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the equation log (d y/d x)=9 x-6 y+6, given that y=1 when x=0, is
Q. The solution of the equation
lo
g
d
x
d
y
=
9
x
−
6
y
+
6
, given that
y
=
1
when
x
=
0
, is
2311
227
Differential Equations
Report Error
A
3
e
6
y
=
2
e
9
x
−
6
+
6
e
6
B
3
e
6
y
=
2
e
9
x
+
6
−
6
e
6
C
3
e
6
y
=
2
e
9
x
+
6
+
e
6
D
None of these
Solution:
We have,
lo
g
d
x
d
y
=
9
x
−
6
y
+
6
⇒
d
x
d
y
=
e
9
x
−
6
y
+
6
=
e
9
x
+
6
⋅
e
−
6
y
⇒
e
6
y
d
y
=
e
9
x
+
6
d
x
Integrating, we get
6
e
6
y
=
9
e
9
x
+
6
+
c
Putting
x
=
0
,
y
=
1
, we get
6
e
6
=
9
e
6
+
c
i.e.
c
=
18
e
6
∴
The solution is
6
e
6
y
=
9
e
9
x
+
6
+
18
e
6
⇒
3
e
6
y
=
2
e
9
x
+
6
+
e
6