We have, cos2x−2cosx=4sinx+4sin2x cos2x−4sin2x=4sinx+2cosx (cosx+2sinx)(cosx−2sinx−2)=0 tanx=2−1,cosx−2sinx=2 1+tan22x1−tan22x−1+tan22x2⋅2tan2x=2 1−tan22x−4tan2x=2+2tan22x⇒3tan22x+4tan2x+1=0 (3tan2x+1)(tan2x+1)=0⇒tan2x=3−1 or −1 ⇒2x=tan−1(31) or 4−π⇒x=−2tan−1(31),2−π]