Q.
The solution of the differential equation xyydx−xdy=xdx+ydy is (where, C is an arbitrary constant)
2210
207
NTA AbhyasNTA Abhyas 2020Differential Equations
Report Error
Solution:
The given equation is (yx)1⋅y2ydx−xdy=xdx+ydy
or d(ln(yx))=xdx+ydy
On integrating, we get, ∫d(ln(yx))=∫xdx+∫ydy ⇒ln(yx)=2x2+2y2+k ⇒2ln(yx)=x2+y2+C