Given ydx+(x−y3)dy=0 ⇒ydydx+x−y3=0⇒dydx+y1x=y2
compare this equation to general equation
i.e. dydx+Px=Q⇒P=y1,Q=y2 ∴ I.f .=e∫Pdy=e∫y1dy=elogy=y
x × I.f. =∫Q×I.f.dy+C1 ⇒x.y=∫y2.ydy+C1⇒xy=4y4+C1 ⇒4xy=y4+4C1 ⇒y4=4xy−4C1⇒y4=4xy+C,
where C =-4C1