Given differential equation can be rewritten as dxdy=xy+yϕ′(x2y2)xϕ(x2y2)
Put y=vx ⇒dxdy=v+xdxdv ∴ Given equation becomes, v+xdxdv=xvx+vxϕ′(x2v2x2)xϕ(x2v2x2) ⇒xdxdv=vϕ′(v2)ϕ(v2) ⇒ϕ(v2)vϕ′(v2)dv=xdx
On integrating both sides, we get 21logϕ(v2)=logx+logc1 ⇒logϕ(v2)=2logxc1 ⇒ϕ(v2)=(xc1)2 ⇒ϕ(x2y2)=x2c12 ⇒ϕ(x2y2)=x2c
[put c12=c]