Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation y (2x4+y)(dy/dx)=(1-4xy2)x2 is given by
Q. The solution of the differential equation
y
(
2
x
4
+
y
)
d
x
d
y
=
(
1
−
4
x
y
2
)
x
2
is given by
2180
173
Differential Equations
Report Error
A
3
(
x
2
y
)
2
+
y
3
−
x
3
=
c
22%
B
x
y
2
+
3
y
3
−
3
x
3
+
c
=
0
11%
C
5
2
y
x
5
+
3
y
3
=
3
x
3
−
3
4
x
y
3
+
c
67%
D
None of these
0%
Solution:
y
(
2
x
4
+
y
)
d
x
d
y
=
(
1
−
4
x
y
2
)
x
2
or
2
x
4
y
d
y
+
y
2
d
y
+
4
x
3
y
2
d
x
−
x
2
d
x
=
0
or
2
x
2
y
(
x
2
d
y
+
2
x
y
d
x
)
+
y
2
d
y
−
x
2
d
x
=
0
or
2
x
2
y
d
(
x
2
y
)
+
y
2
d
y
−
x
2
d
x
=
0
Integrating, we get
(
x
2
y
)
2
+
3
y
3
−
3
x
3
=
c
or
3
(
x
2
y
)
2
+
y
3
−
x
3
=
c