Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation xy2 dy - (x3 + y3) dx = 0 is
Q. The solution of the differential equation
x
y
2
d
y
−
(
x
3
+
y
3
)
d
x
=
0
is
4592
206
BITSAT
BITSAT 2008
Report Error
A
y
3
=
3
x
3
+
c
0%
B
y
3
=
3
x
3
lo
g
(
c
x
)
50%
C
y
3
=
3
x
3
+
lo
g
(
c
x
)
0%
D
y
3
=
3
x
3
=
lo
g
(
c
x
)
50%
Solution:
x
y
2
d
y
−
(
x
3
+
y
3
)
d
x
=
0
⇒
x
y
2
d
y
=
(
x
3
+
y
3
)
d
x
(changing sides)
⇒
d
x
d
y
=
x
y
2
x
3
+
y
3
...(i)
Now, Let
y
=
vx
⇒
d
x
d
y
=
v
+
x
d
x
d
v
..(ii)
replacing value of
d
x
d
y
in (i)
v
+
x
d
x
d
v
=
x
y
2
x
3
+
y
3
=
x
y
2
x
3
+
y
2
x
y
3
=
y
2
x
2
+
x
y
∴
v
+
x
d
x
d
v
=
y
2
x
2
+
x
y
v
+
x
d
x
d
v
=
y
2
x
2
+
v
⇒
x
d
x
d
v
=
y
2
/
x
2
1
=
v
2
1
⇒
v
2
d
v
=
x
d
x
...(iii)
(by cross multiplication)
Now, integrating both side of equation (iii)
we have,
∫
v
2
d
v
=
∫
x
d
x
⇒
3
v
3
=
lo
g
x
+
lo
g
c
⇒
3
v
3
=
lo
g
(
x
c
)
[
∵
lo
g
a
+
lo
g
b
=
lo
g
ab
]
⇒
v
3
=
3
lo
g
(
c
x
)
⇒
x
3
y
3
=
3
lo
g
(
c
x
)
y
3
=
3
x
3
lo
g
(
c
x
)