Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation, x y (d y/d x)=(1+y2/1+x2)(1+x+x2) given that when x=1, y=0 is
Q. The solution of the differential equation,
x
y
d
x
d
y
=
1
+
x
2
1
+
y
2
(
1
+
x
+
x
2
)
given that when
x
=
1
,
y
=
0
is
606
118
Differential Equations
Report Error
A
ln
1
+
y
2
=
ln
x
+
tan
−
1
x
−
2
π
B
ln
x
2
1
+
y
2
=
2
tan
−
1
x
−
2
π
C
ln
(
x
2
1
+
y
2
)
=
4
π
−
2
tan
−
1
x
D
ln
x
2
1
+
y
2
=
tan
−
1
x
−
4
π
Solution:
∫
1
+
y
2
y
d
y
=
∫
x
(
1
+
x
2
)
1
+
x
+
x
2
d
x
;
2
1
ln
(
1
+
y
2
)
=
tan
−
1
x
+
ln
x
+
C
ln
x
2
1
+
y
2
=
2
tan
−
1
x
+
C
.