Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (x tan ((y/x))-y sec 2((y/x))) d x+x sec 2((y/x)) d y=0 satisfying the initial condition y(1)=(π/4) is
Q. The solution of the differential equation
(
x
tan
(
x
y
)
−
y
sec
2
(
x
y
)
)
d
x
+
x
sec
2
(
x
y
)
d
y
=
0
satisfying the initial condition
y
(
1
)
=
4
π
is
2030
186
Differential Equations
Report Error
A
x
sec
x
y
=
2
29%
B
x
tan
x
y
=
1
29%
C
x
tan
2
x
y
=
1
29%
D
x
sec
2
x
y
=
2
14%
Solution:
Put
y
=
vx
⇒
d
x
d
y
=
v
+
x
d
x
d
v
So, given equation reduces to
(
tan
v
˙
−
v
sec
2
v
)
+
sec
2
v
(
v
+
x
d
x
d
v
)
=
0
⇒
tan
v
−
v
sec
2
v
+
v
sec
2
v
+
x
sec
2
v
d
x
d
v
=
0
⇒
∫
t
a
n
v
s
e
c
2
v
d
v
=
−
∫
x
d
x
⇒
lo
g
e
(
tan
v
)
=
−
lo
g
e
x
+
lo
g
e
c
⇒
x
tan
v
=
c
⇒
x
tan
x
y
=
c
Now,
y
(
1
)
=
4
π
⇒
c
=
1
∴
x
tan
x
y
=
1