Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation x (d y/d x)=y-x tan ((y/x)) is (Here, k is an arbitrary constant )
Q. The solution of the differential equation
x
d
x
d
y
=
y
−
x
tan
(
x
y
)
is (Here,
k
is an arbitrary constant )
1597
239
AP EAMCET
AP EAMCET 2019
Report Error
A
x
=
y
sin
−
1
(
x
k
)
B
y
=
x
sin
−
1
(
x
k
)
C
x
sin
y
+
k
=
0
D
y
=
x
cos
(
k
x
)
Solution:
Given differential equation is
x
d
x
d
y
=
y
−
x
tan
x
y
⇒
d
x
d
y
=
x
y
−
tan
(
x
y
)
Let
y
=
v
⋅
x
⇒
d
x
d
y
=
v
+
x
d
x
d
v
So,
v
+
x
d
x
d
v
=
v
−
tan
v
⇒
t
a
n
v
d
v
=
−
x
d
x
⇒
∫
cot
v
d
v
=
∫
(
−
x
1
)
d
x
⇒
d
lo
g
∣
sin
v
∣
=
−
lo
g
∣
x
∣
+
lo
g
k
⇒
sin
v
=
x
k
⇒
v
=
sin
−
1
(
x
k
)
⇒
y
=
x
sin
−
1
(
x
k
)