Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation x cos x (d y/d x)+(x sin x+ cos x) y=1 is
Q. The solution of the differential equation
x
cos
x
d
x
d
y
+
(
x
sin
x
+
cos
x
)
y
=
1
is
1570
228
TS EAMCET 2020
Report Error
A
x
sec
x
−
y
tan
x
=
C
B
x
2
y
cos
x
−
tan
x
=
C
C
x
y
sec
x
+
y
tan
x
=
C
D
x
y
sec
x
−
tan
x
=
C
Solution:
We have
x
cos
x
d
x
d
y
+
(
x
sin
x
+
cos
x
)
y
=
1
d
x
d
y
+
(
tan
x
+
x
1
)
y
=
x
s
e
c
x
IF
=
e
∫
(
t
a
n
x
+
x
1
)
d
x
=
e
l
o
g
s
e
c
x
+
l
o
g
x
=
e
l
o
g
x
s
e
c
x
=
x
sec
x
Solution of differential equation is
x
y
sec
x
=
∫
x
s
e
c
x
⋅
x
sec
x
d
x
+
C
⇒
x
y
sec
x
=
∫
sec
2
x
d
x
+
C
⇒
x
y
sec
x
=
tan
x
+
C
⇒
x
y
sec
x
−
tan
x
=
C