Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation x (dy/dx) + 2y = x2 (x ≠ 0) with y(1) = 1, is
Q. The solution of the differential equation
x
d
x
d
y
+
2
y
=
x
2
(
x
=
0
)
with
y
(
1
)
=
1
, is
2014
199
JEE Main
JEE Main 2019
Differential Equations
Report Error
A
y
=
5
x
3
+
5
x
2
1
8%
B
y
=
5
4
x
3
+
5
x
2
1
0%
C
y
=
5
3
x
2
+
4
x
2
1
0%
D
y
=
4
x
2
+
4
x
2
3
92%
Solution:
x
d
x
d
y
+
2
y
=
x
2
:
y
(
1
)
=
1
d
x
d
y
+
(
x
2
)
y
=
x
(
L
D
E
in
y
)
IF =
e
∫
x
2
d
x
=
e
2
ℓ
n
x
=
x
2
y
.
(
x
2
)
=
∫
x
.
x
2
d
x
=
4
x
4
+
C
y(1) = 1
1
=
4
1
+
C
⇒
C
=
1
−
4
1
=
4
3
y
x
2
=
4
x
4
+
4
3
y
=
4
x
2
+
4
x
2
3