Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (x2-yx2)(dy/dx)+y2+xy2=0 is
Q. The solution of the differential equation
(
x
2
−
y
x
2
)
d
x
d
y
+
y
2
+
x
y
2
=
0
is
2409
230
Jharkhand CECE
Jharkhand CECE 2014
Report Error
A
lo
g
(
y
x
)
=
x
1
+
y
1
+
C
B
lo
g
(
x
y
)
=
x
1
+
y
1
+
C
C
lo
g
(
x
y
)
=
x
1
+
y
1
+
C
D
lo
g
(
x
y
)
+
x
1
+
y
1
=
C
Solution:
Given differential equation is
(
x
2
−
y
x
2
)
d
x
d
y
+
y
2
=
x
y
2
=
0
⇒
y
2
1
−
y
d
y
+
x
2
1
+
x
d
x
=
0
⇒
(
y
2
1
−
y
1
)
d
y
+
(
x
2
1
+
x
1
)
d
x
=
0
On integrating both sides, we get the required solution
y
−
2
−
lo
g
y
−
x
2
+
lo
g
x
=
C
⇒
lo
g
(
y
x
)
=
x
1
+
y
1
+
C