Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (x2 +y2)dx - 2xy dy = 0 is
Q. The solution of the differential equation
(
x
2
+
y
2
)
d
x
−
2
x
y
d
y
=
0
is
5826
174
Differential Equations
Report Error
A
x
2
+
y
2
y
=
c
27%
B
x
x
2
+
y
2
=
c
39%
C
y
y
2
−
x
2
=
c
22%
D
x
x
2
−
y
2
=
c
12%
Solution:
Given
(
x
2
+
y
2
)
d
x
=
2
x
y
d
y
⇒
d
x
d
y
=
2
1
(
y
x
+
x
y
)
Putting
y
=
t
x
⇒
d
x
d
y
=
t
+
x
d
x
d
t
∴
Given equation becomes,
x
d
x
d
t
=
2
t
1
−
t
2
⇒
1
−
t
2
2
t
d
t
=
x
d
x
On integrating, we get
l
o
g
(
1
−
t
2
)
=
−
l
o
g
x
+
l
o
g
c
⇒
1
−
t
2
=
x
c
⇒
x
2
x
2
−
y
2
=
x
c
⇒
x
x
2
−
y
2
=
c