Given, sec2y⋅tanydx+sec2y⋅tanxdy=0
On separating the variables, we get ⇒sec2x⋅tanydx=−sec2y⋅tanxdy ⇒tanxsec2xdx=−tanysec2ydy
On integrating both the sides, we get ∫tanxsec2xdx=−∫tanysec2xdy
Let tanx=u ⇒sec2x=dxdu ⇒dx=sec2ydu and tany=v ⇒sec2y=dydv ⇒dy=sec2ydu ∫usec2x⋅sec2xdu=−∫vsec2y⋅sec2ydv ⇒∫udu=−∫vdv ⇒log∣x∣=−log∣v∣+log∣c∣ ⇒log∣tanx∣=−log∣tany∣+log∣c∣ ⇒log∣tanx⋅tany∣=log∣c∣ (∵logm+logn=logmn) ⇒(∵logm=logn⇒m=n)
which is the required general solution.