Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation log x (dy/dx)+(y/x)=sin 2x is
Q. The solution of the differential equation
l
o
gx
d
x
d
y
+
x
y
=
s
in
2
x
is
2434
219
KEAM
KEAM 2013
Differential Equations
Report Error
A
y
l
o
g
∣
∣
x
∣
∣
=
C
−
2
1
cos
x
13%
B
y
l
o
g
∣
∣
x
∣
∣
=
C
+
2
1
cos
2
x
26%
C
y
l
o
g
∣
∣
x
∣
∣
=
C
−
2
1
cos
2
x
36%
D
x
y
l
o
g
∣
∣
x
∣
∣
=
C
−
2
1
cos
2
x
21%
E
y
l
o
g
∣
∣
x
∣
∣
=
C
x
−
2
1
cos
x
21%
Solution:
Given differential equation is
lo
g
x
d
x
d
y
+
x
y
=
sin
2
x
…
(
i
)
⇒
d
x
d
y
+
x
l
o
g
x
y
=
l
o
g
x
s
i
n
2
x
I
F
=
e
∫
x
l
o
g
x
1
d
x
=
e
l
o
g
(
l
o
g
x
)
=
lo
g
∣
x
∣
∴
Complete solution is
y
⋅
(
lo
g
∣
x
∣
)
=
∫
lo
g
x
⋅
l
o
g
x
s
i
n
2
x
d
x
+
C
=
∫
sin
2
x
d
x
+
C
=
−
2
1
cos
2
x
+
C
⇒
y
lo
g
∣
x
∣
=
C
−
2
1
cos
2
x