Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (kx-y2) dy =(x2-ky) dx is
Q. The solution of the differential equation
(
k
x
−
y
2
)
d
y
=
(
x
2
−
k
y
)
d
x
is
2128
231
KEAM
KEAM 2014
Differential Equations
Report Error
A
x
3
−
y
3
=
3
k
x
y
+
C
B
x
3
+
y
3
=
3
k
x
y
+
C
C
x
2
−
y
2
=
2
k
x
y
+
C
D
x
2
+
y
2
=
2
k
x
y
+
C
E
x
3
−
y
2
=
3
k
x
y
+
C
Solution:
Given differential equation is
(
k
x
−
y
2
)
d
y
=
(
x
2
−
k
y
)
d
x
⇒
k
x
d
y
−
y
2
d
y
=
x
2
d
x
−
k
y
d
x
⇒
k
(
x
d
y
+
y
d
x
)
=
x
2
d
x
+
y
2
d
y
⇒
k
[
d
(
x
y
)]
=
x
2
d
x
+
y
2
d
y
On integrating both sides, we get
k
(
x
y
)
=
3
x
3
+
3
y
3
−
3
C
⇒
x
3
+
y
3
=
3
k
x
y
+
C