Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $\left(kx-y^{2}\right) dy =\left(x^{2}-ky\right) dx $ is

KEAMKEAM 2014Differential Equations

Solution:

Given differential equation is
$\left(k x-y^{2}\right) d y=\left(x^{2}-k y\right) d x$
$\Rightarrow k x\, d y-y^{2} d y=x^{2} d x-k y\, d x$
$\Rightarrow k(x \,d y+y d x)=x^{2} \,d x+y^{2} \,d y$
$\Rightarrow k[d(x y)]=x^{2} \,d x+y^{2}\, d y$
On integrating both sides, we get
$k(x y)=\frac{x^{3}}{3}+\frac{y^{3}}{3}-\frac{C}{3}$
$ \Rightarrow x^{3}+y^{3}=3\, k x y+C$