We have e−x(y+1)dy+(cos2x−sin2x)ydx=0 ⇒y(y+1)dy=−ex(cos2x−sin2x)dx ⇒(1+y1)dy=−ex(cos2x−sin2x)dx
On integrating both sides, we get y+logy=−excos2x+∫exsin2xdx −∫exsin2xdx+c ⇒y+logy=−excos2x+c
At x=0,y=1 ⇒1+0=−e0cos0+c ⇒c=2 ∴ Required solution is y+logy=−excos2x+2