Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (dy/dx)=(yf '(x)-y2/f (x)) is
Q. The solution of the differential equation
d
x
d
y
=
f
(
x
)
y
f
′
(
x
)
−
y
2
is
4428
212
VITEEE
VITEEE 2013
Differential Equations
Report Error
A
f
(
x
)
=
y
+
C
B
f
(
x
)
=
y
(
x
+
C
)
C
f
(
x
)
=
x
+
C
D
None of the above
Solution:
The given equation is
d
x
d
y
=
f
(
x
)
y
f
′
(
x
)
−
y
2
⇒
y
f
′
(
x
)
d
x
−
f
(
x
)
d
y
=
y
2
d
x
⇒
y
2
y
f
′
(
x
)
d
x
−
f
(
x
)
d
y
=
d
x
⇒
d
{
y
f
(
x
)
}
=
d
x
On integration, we get
y
f
(
x
)
=
x
+
C
⇒
f
(
x
)
=
y
(
x
+
C
)