Divide the equation by y(logy)2 y(logy)21dxdy+logy1⋅x1=x21
Put logy1=z⇒y(logy)2−1dxdy=dxdz
Thus, we get, −dxdz+x1⋅z=x21, linear in z ⇒dxdz+(−x1)z=−x21
I.F. =e−∫x1dx=e−logx=x1 ∴ The solution is, z(x1)=∫x2−1(x1)dx+c ⇒logy1(x1)=−2−x−2+c⇒xlogy(cx2+21)