Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (dy/dx)=ex-y(ex-ey) is
Q. The solution of the differential equation
d
x
d
y
=
e
x
−
y
(
e
x
−
e
y
)
is
1707
203
Jharkhand CECE
Jharkhand CECE 2013
Report Error
A
e
y
=
(
e
x
+
1
)
+
C
e
−
x
B
e
y
=
(
e
x
−
1
)
+
C
C
e
y
=
(
e
x
−
1
)
+
C
e
−
x
D
None of the above
Solution:
d
x
d
y
=
e
y
e
x
(
e
x
−
e
y
)
⇒
e
y
d
x
d
y
+
e
x
⋅
e
y
=
e
x
⋅
e
x
Let
e
y
=
t
⇒
e
y
d
x
d
y
⋅
x
y
=
d
x
d
t
Then, given equation reduces to
d
x
d
t
+
e
x
t
=
e
2
x
Here,
P
=
e
x
and
Q
=
e
2
x
∴
I
F
=
e
∫
P
d
x
=
e
∫
e
x
d
x
=
e
e
x
Required solution is
t
⋅
e
e
x
=
∫
e
2
x
⋅
e
e
x
d
x
+
C
⇒
e
y
=
(
e
x
−
1
)
+
C
⋅
e
−
e
x