Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (dy/dx)=(3x2y4+2xy/x2-2x3 y3) is
Q. The solution of the differential equation
d
x
d
y
=
x
2
−
2
x
3
y
3
3
x
2
y
4
+
2
x
y
is
1802
243
Differential Equations
Report Error
A
x
y
2
−
x
3
y
2
=
c
0%
B
y
2
x
2
+
x
3
y
3
=
c
0%
C
y
x
2
+
x
3
y
2
=
c
0%
D
3
y
x
2
−
2
x
3
y
2
=
c
100%
Solution:
Rewrite the differential equation as
(
2
x
y
d
x
−
x
2
d
y
)
+
y
2
(
3
x
2
y
2
d
x
+
2
x
3
y
d
y
)
=
0
Dividing by
y
2
, we get
y
2
y
2
x
d
x
−
x
2
d
y
+
y
2
3
x
2
d
x
+
x
3
2
y
d
y
=
0
or
d
=
(
y
x
2
)
+
d
(
x
3
y
2
)
=
0
Integrating, we get the solution
y
x
2
+
x
3
y
2
=
c