Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (dy/dx)=(3e2x+3e4x/ex +e-x)is
Q. The solution of the differential equation
d
x
d
y
=
e
x
+
e
−
x
3
e
2
x
+
3
e
4
x
is
5251
188
KEAM
KEAM 2013
Differential Equations
Report Error
A
y
=
e
3
x
+
C
B
y
=
2
e
2
x
+
C
C
y
=
e
x
+
C
D
y
=
e
4
x
+
C
E
y
=
9
e
3
x
+
C
Solution:
Given differential equation is
d
x
d
y
=
e
x
+
e
−
x
3
e
2
x
+
3
e
4
x
=
(
1
+
e
2
x
)
3
e
2
x
(
1
+
e
2
x
)
⋅
e
x
⇒
d
x
d
y
=
3
⋅
e
3
x
⇒
∫
d
y
=
∫
3
⋅
e
3
x
d
x
(on integrating)
⇒
y
=
3
⋅
3
e
3
x
+
C
⇒
y
=
e
3
x
+
C