Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (dy/dx) + (2yx/1+x2) = (1/(1+x2)2) is
Q. The solution of the differential equation
d
x
d
y
+
1
+
x
2
2
y
x
=
(
1
+
x
2
)
2
1
is
3292
204
VITEEE
VITEEE 2012
Differential Equations
Report Error
A
y
(
1
+
x
2
)
=
C
+
tan
−
1
x
39%
B
1
+
x
2
y
=
C
+
tan
−
1
x
9%
C
y
l
o
g
(
1
+
x
2
)
=
C
+
tan
−
1
x
42%
D
y
(
1
+
x
2
)
=
C
+
sin
−
1
x
9%
Solution:
d
x
d
y
+
1
+
x
2
2
y
x
=
(
1
+
x
2
)
2
1
which is a linear differential equation.
Here,
P
=
1
+
x
2
2
x
,
Q
=
(
1
+
x
2
)
2
1
Now,
I
F
−
e
∫
P
d
x
=
e
∫
1
+
x
2
2
x
d
x
=
e
l
o
g
(
1
+
x
2
)
=
(
1
+
x
2
)
∴
Solution of differential equation is
y
.
(
1
+
x
2
)
=
∫
(
1
+
x
2
)
2
1
.
(
1
+
x
2
)
d
x
+
C
⇒
y
(
1
+
x
2
)
=
∫
1
+
x
2
1
d
x
+
C
⇒
y
(
1
+
x
2
)
=
tan
−
1
x
+
C