We have, dxdy=2xy−x22xy−y2.... (i)
Let y=vx.... (ii) ⇒dxdy=v+xdxdv.... (iii)
On putting the values from Eqs. (ii) and (iii) in Eq. (i), we get v+xdxdv=2v−12v−v2 ⇒xdxdv=2v−12v−v2−v ⇒xdxdv=2v−12v−v2−2v2+v ⇒xdxdv=2v−13v−3v2 ⇒v2−v2v−1dv=x−3dx ⇒∫(v2−v2v−1)dv=−3∫xdx ⇒log∣∣v2−v∣∣=−3logx+logc ⇒log(v2−v)x3=logc ⇒(x2y2−xy)x3=c ⇒x(y2−xy)≡c ⇒xy(y−x)=c ⇒xy(x−y)=c