Q.
The solution of the differential equation dxdy+x1tany=x21tanysiny is
2568
245
Rajasthan PETRajasthan PET 2005
Report Error
Solution:
dxdy+x1tany=x21tanysiny ⇒cotycosecydxdy+x1cosecy=x21 ...(i)
Let cosec y=−v ⇒−cosecy.cotydxdy=dx−dv
Then dxdv−x1v=x21
Here, P=−x1,Q=x21 IF=e∫Pdx =e∫(−x1)dx=e−logx =x−1=1/x
Hence, solution of the given differential equation is v.(x1)=∫x21.(x1)dx−c =∫x31dx−c ⇒xv=(−2x21)−c ⇒xv=−2x21−c ⇒2xv=−(1+2cx2) ⇒−2xcosecy=−(1+2cx2) ⇒2x=siny(1+2cx2)