Q.
The solution of the differential equation dxdy+xy=(1+lnx+lny)21 is (where, c is an arbitrary constant)
2745
218
NTA AbhyasNTA Abhyas 2020Differential Equations
Report Error
Solution:
dxdy+xy=(1+lnxy)21
Let xy=u so that dxdu=(1+lnu)2x ∴∫(1+lnu)2du=∫xdx+c ⇒u(1+lnu)2−∫u2(1+lnu)⋅udu=2x2+c ⇒u(1+2lnu+2u(lnu)2)−2ulnu=2x2+c ∴xy(1+(ln(xy))2)=2x2+c