Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{(1+\ln x+\ln y)^{2}}$ is (where, $c$ is an arbitrary constant)

NTA AbhyasNTA Abhyas 2020Differential Equations

Solution:

$\frac{d y}{d x}+\frac{y}{x}=\frac{1}{(1+\ln x y)^{2}}$
Let $x y=u$ so that $\frac{d u}{d x}=\frac{x}{(1+\ln u)^{2}}$
$\therefore \quad \int(1+\ln u)^{2} d u=\int x d x+c$
$\Rightarrow u(1+\ln u)^{2}-\int \frac{2(1+\ln u)}{u} \cdot u d u=\frac{x^{2}}{2}+c$
$\Rightarrow u\left(1+2 \ln u+2 u(\ln u)^{2}\right)-2 u \ln u=\frac{x^{2}}{2}+c$
$\therefore x y\left(1+(\ln (x y))^{2}\right)=\frac{x^{2}}{2}+c$