Q.
The solution of the differential equation dxdy+x(2x+y)=x3(2x+y)3−2 is ( C being an arbitrary constant)
3055
193
NTA AbhyasNTA Abhyas 2020Differential Equations
Report Error
Solution:
Let, 2x+y=t⇒dxdy+2=dxdt dxdt+xt=x3t3⇒t31dxdt+t21x=x3
Let, t21=u⇒t3−2dxdt=dxdu dxdu+(−2x)u=−2x3 I.F.=e−∫2xdx=e−x2⇒u.e−x2=∫e−x2(−2x3)dx (2x+y)2e−x2=−2∫e−x2.x3dx (2x+y)2e−x2=∫e−x2.x2(−2x)dx
Let, −x2=v −2xdx=dv⇒(2x+y)2e−x2=−∫evvdv (2x+y)2e−x2+v⋅ev−ev=C⇒(2x+y)2e−x2−x2e−x2−e−x2=C (2x+y)21=(x2+1)+Cex2