Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (d y/d x)=-((x2+3 y2/3 x2+y2)), y(1)=0 is
Q. The solution of the differential equation
d
x
d
y
=
−
(
3
x
2
+
y
2
x
2
+
3
y
2
)
,
y
(
1
)
=
0
is
140
125
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
lo
g
e
∣
x
+
y
∣
−
(
x
+
y
)
2
x
y
=
0
B
lo
g
e
∣
x
+
y
∣
−
(
x
+
y
)
2
2
x
y
=
0
C
lo
g
e
∣
x
+
y
∣
+
(
x
+
y
)
2
x
y
=
0
D
lo
g
e
∣
x
+
y
∣
+
(
x
+
y
)
2
2
x
y
=
0
Solution:
Put
y
=
vx
v
+
x
d
x
d
v
=
−
(
3
+
v
2
1
+
3
v
2
)
x
d
x
d
v
=
−
3
+
v
2
(
v
+
1
)
3
(
v
+
1
)
3
(
3
+
v
2
)
d
v
+
x
d
x
=
0
∫
(
v
+
1
)
3
4
d
v
+
∫
v
+
1
d
v
−
∫
(
v
+
1
)
2
2
d
v
+
∫
x
d
x
=
0
(
v
+
1
)
2
−
2
+
ln
(
v
+
1
)
+
v
+
1
2
+
ln
x
=
c
(
x
+
y
)
2
−
2
x
2
+
ln
(
x
x
+
y
)
+
x
+
y
2
x
+
ln
x
=
c
(
x
+
y
)
2
2
x
y
+
ln
(
x
+
y
)
=
c
∴
c
=
0
,
as
x
=
1
,
y
=
0
∴
(
x
+
y
)
2
2
x
y
+
ln
(
x
+
y
)
=
0