Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (d y/d x)=(2 x - y/x - 6 y) is (where c is an arbitrary constant)
Q. The solution of the differential equation
d
x
d
y
=
x
−
6
y
2
x
−
y
is (where
c
is an arbitrary constant)
101
163
NTA Abhyas
NTA Abhyas 2022
Report Error
A
4
x
y
=
x
2
−
3
y
+
c
B
x
y
=
x
2
−
y
2
+
c
C
x
y
=
x
2
+
3
y
2
+
c
D
x
y
=
x
2
+
c
Solution:
Given equation is
x
d
y
−
6
y
d
y
=
2
x
d
x
−
y
d
x
⇒
x
d
y
+
y
d
x
=
2
x
d
x
+
6
y
d
y
or
d
(
x
y
)
=
2
x
d
x
+
6
y
d
y
On integrating, we get,
x
y
=
x
2
+
3
y
2
+
c