Q.
The solution of the differential equation dxdy+x1=x2ey,(∀x>0) is λxe−y=1−2cx2 (where c is an arbitrary constant). Then, the value of λ is equal to
The given equation is e−ydxdy+e−y⋅x1=x21
Let, −e−y=t⇒e−ydxdy=dxdt
Thus we have, dxdt−tx1=x21
Integrating factor =e−∫x1dx=e−lnx=x1
Thus, the solution is t⋅(x1)=∫x21⋅x1dx ⇒x−e−y=−2x−2+c ⇒x−e−y=2x2−1+c ⇒−2xe−y=−1+2cx2 or 2xe−y=1−2cx2
Hence, λ=2