Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (d x/d y)+2 y x=2 y which passes through the point (2,0) is
Q. The solution of the differential equation
d
y
d
x
+
2
y
x
=
2
y
which passes through the point
(
2
,
0
)
is
1681
175
AP EAMCET
AP EAMCET 2018
Report Error
A
(
x
−
1
)
=
2
e
y
2
B
(
x
−
1
)
=
2
e
−
y
2
C
(
x
−
1
)
=
e
y
2
D
(
x
−
1
)
=
e
−
y
2
Solution:
Given differential equation is,
d
y
d
x
+
2
y
⋅
x
=
2
y
⇒
d
y
d
x
=
2
y
(
1
−
x
)
⇒
∫
1
−
x
d
x
=
∫
2
y
d
y
⇒
−
lo
g
(
x
−
1
)
=
y
2
+
c
Since, curve (i) passes through the point
(
2
,
0
)
, so
c
=
0
So, curve will be
(
x
−
1
)
=
e
−
y
2