Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (1+y2)+(x-e tan -1 y) (d y/d x)=0 is (where C is constant of integration.)
Q. The solution of the differential equation
(
1
+
y
2
)
+
(
x
−
e
t
a
n
−
1
y
)
d
x
d
y
=
0
is
(where
C
is constant of integration.)
1550
97
Differential Equations
Report Error
A
2
x
e
t
a
n
−
1
y
=
e
2
t
a
n
−
1
y
+
C
B
x
e
t
a
n
−
1
y
=
tan
−
1
y
+
C
C
x
e
2
t
a
n
−
1
y
=
e
t
a
n
−
1
y
+
C
D
(
x
−
2
)
=
C
e
−
t
a
n
−
1
y
Solution:
∵
(
1
+
y
2
)
+
(
x
−
e
t
a
n
−
1
y
)
d
x
d
y
=
0
⇒
d
y
d
x
+
1
+
y
2
x
=
1
+
y
2
e
t
a
n
−
1
y
I.F.
=
e
∫
1
+
y
2
d
y
=
e
t
a
n
−
1
y
∴
Solution is
x
e
t
a
n
−
1
y
=
∫
1
+
y
2
e
2
t
a
n
−
1
y
d
y
=
2
e
2
t
a
n
−
1
y
+
2
C
⇒
2
x
e
t
a
n
−
1
y
=
e
2
t
a
n
−
1
y
+
C
,
C
=
constant of integration.