Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (1 - x2)(d y/d x)-xy=1 is (where, |x| < 1,x∈ R and C is an arbitrary constant)
Q. The solution of the differential equation
(
1
−
x
2
)
d
x
d
y
−
x
y
=
1
is (where,
∣
x
∣
<
1
,
x
∈
R
and
C
is an arbitrary constant)
369
158
NTA Abhyas
NTA Abhyas 2022
Report Error
A
y
(
1
−
x
2
)
=
tan
−
1
x
+
C
B
y
1
−
x
2
=
tan
−
1
x
+
C
C
y
1
−
x
2
=
sin
−
1
(
x
)
+
C
D
y
⋅
(
1
−
x
2
)
=
sin
−
1
x
+
C
Solution:
d
x
d
y
−
1
−
x
2
x
y
=
1
−
x
2
1
L.
F
.
=
e
−
∫
1
−
x
2
x
d
x
=
e
2
1
∫
−
1
−
x
2
2
x
d
x
=
e
2
1
l
n
(
1
−
x
2
)
=
1
−
x
2
Hence, the solution of the differential equation is
y
1
−
x
2
=
∫
1
−
x
2
1
−
x
2
d
x
y
1
−
x
2
=
∫
1
−
x
2
1
d
x
y
1
−
x
2
=
sin
−
1
(
x
)
+
C