Given differential equation is ysin(yx)dx={xsin(yx)−y}dy ⇒dydx=ysin(yx)xsin(yx)−y=yx−sin(yx)1 ... (i)
On putting v=yx⇒x=v ⇒dydx=v⋅1+ydydv in Eq. (i), we get v+ydydv=v−sinv1 ⇒ydydv=−sinv1 ⇒−∫sinvdv=∫ydy (on integrating) ⇒cosv=logy+C ⇒cos(yx)=logy+C...(i)
Given at x=4π,y=1 then from Eq. (i) ⇒cos(4π)=log(1)+C ⇒(C=21)
On putting the value of C in Eq. (i), we get cos(yx)=logey+21
Which is the required solution. So no option is correct.