Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of inequality cos 2 x ≤ cos x is
Q. The solution of inequality
cos
2
x
≤
cos
x
is
103
165
Trigonometric Functions
Report Error
A
x
∈
[
2
nπ
−
3
π
,
2
nπ
+
3
π
]
,
n
∈
I
B
x
∈
[
2
nπ
−
3
2
π
,
2
nπ
+
3
2
π
]
,
n
∈
I
C
x
∈
[
2
nπ
,
2
nπ
+
3
2
π
]
,
n
∈
I
D
x
∈
[
2
nπ
−
3
2
π
,
2
nπ
]
,
n
∈
I
Solution:
cos
2
x
≤
cos
x
⇒
2
cos
2
x
−
cos
x
−
1
≤
0
⇒
2
cos
2
x
−
2
cos
x
+
cos
x
−
1
≤
0
⇒
2
cos
x
(
cos
x
−
1
)
+
1
(
cos
x
−
1
)
≤
0
⇒
(
cos
x
−
1
)
(
2
cos
x
+
1
)
≤
0
⇒
cos
x
∈
[
−
2
1
,
1
]
∴
x
∈
[
−
3
2
π
,
3
2
π
]
General soltution is
x
∈
[
2
nπ
−
3
2
π
,
2
nπ
+
3
2
π
]
,
n
∈
I