The given differential equation is, dxdy=(y+4x+1)2...(i)
Put (y+4x+1)=t ⇒dxdy+4=dxdt ∴(i) becomes, dxdt−4=t2 ⇒dxdt=t2+22 ⇒∫t2+22dt=∫dx ⇒21tan−1(2t)=x+C ⇒21tan−1(2y+4x+1)=x+C
Now, at x=0,y=1 ∴21tan−1(1)=C ⇒C=8π
So, the required solution is , 21tan−1(2y+4x+1)=x+8π ⇒y+4x+1=2tan(2x+4π) ⇒y=2tan(2x+4π)−4x−1