The given equation can be written as xydxdy={x2y2+f′(y2/x2)f(y2/x2)}
The above equation is a homogeneous equation.
Putting y=vx, we get v[v+xdxdv]=v2+f′(v2)f(v2)
or vxdxdv=f′(v2)f(v2) or f(v2)2vf′(v2)dv=2xdx
Now, integrating both sides, we get logf(v2)=logx2+logc
or logf(v2)=logcx2 or f(v2)=cx2c= constant ]
or f(y2/x2)=cx2