Given differential equation is (ylogx−1)ydx=xdy ⇒dxdy=x(ylogx−1)y =xy2logx−xy ⇒dxdy+xy=xy2logx ⇒y21dxdy+xy−1=xlogx ...(i)
Put y−1=v ⇒−y−2dxdy=dxdv
From Eq. (i), we have −dxdv+xv=xlogx ⇒dxdv−xv=−xlogx
This is linear differential equation.
Here, IF=e∫(−x1)dx=e−logx=x1
So, solution is v⋅IF=∫IF⋅Qdx+C v⋅x1=∫x1(−xlogx)dx+C ⇒v⋅x1=−∫x2logxdx+C =−[logx(x−1)+∫x1⋅x1dx]+C ⇒x⋅y1=xlogx+x1+C[∵v=y1] ⇒1=y[logx+1+Cx] ⇒1=y[logx+loge+Cx][∵1=loge] ⇒1=y[loge⋅x+Cx]