Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of differential equation x (dy/dx)+2y=x2 is
Q. The solution of differential equation
x
d
x
d
y
+
2
y
=
x
2
is
3544
193
KCET
KCET 2015
Differential Equations
Report Error
A
y
=
4
x
2
x
2
+
C
20%
B
y
=
4
x
2
+
C
33%
C
y
=
x
2
x
2
+
C
18%
D
y
=
4
x
2
x
4
+
C
29%
Solution:
We have,
x
=
d
x
d
y
+
2
y
=
x
2
⇒
d
x
d
y
+
x
2
y
=
x
The above equation is a linear differential equation in y.
∴
I
F
=
e
∫
x
2
d
x
=
e
2
l
o
g
x
=
x
2
Hence, required solution will be
y
.
x
2
=
∫
x
.
x
2
d
x
+
C
1
⇒
y
x
2
=
4
x
4
+
C
1
⇒
y
x
2
=
4
x
4
+
4
C
1
⇒
y
=
4
x
2
x
4
+
C
[
∵
4
C
1
=
C
]