sec2ydxdy+2xtany=x3
Let tany=v ⇒sec2ydxdy=dxdv
The given equation becomes dxdv+2xv=x3
Now, I.F. =e∫2xdx=ex2
Hence, the solution of the differential equation is v⋅ex2=∫x3⋅ex2dx+c
Let x2=t⇒dt=2xdx ⇒v⋅ex2=21∫tetdt+c=21et(t−1)+c ⇒v⋅ex2=21ex2(x2−1)+c ∴tany=21(x2−1)+ce−x2