Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of differential equation (ey + 1) cos x dx + ey sin x dy = 0 is
Q. The solution of differential equation
(
e
y
+
1
)
cos
x
d
x
+
e
y
s
in
x
d
y
=
0
is
3281
232
Differential Equations
Report Error
A
(
e
y
+
1
)
s
in
x
=
c
14%
B
e
x
s
in
x
=
c
29%
C
(
e
x
+
1
)
cos
x
=
c
36%
D
none of these
21%
Solution:
Given
(
e
y
+
1
)
cos
x
d
x
+
e
y
s
in
x
d
y
=
0
⇒
1
+
e
y
e
y
d
y
=
−
s
in
x
cos
x
d
x
⇒
(
1
−
1
+
e
y
1
)
d
y
=
−
co
t
x
d
x
⇒
(
1
−
1
+
e
−
y
(
−
e
−
y
)
)
d
y
=
−
co
t
x
d
x
On integrating, we get
y
+
l
o
g
(
e
y
1
+
e
y
)
=
l
o
g
(
s
in
x
c
)
.
⇒
y
=
l
o
g
(
s
in
x
c
)
+
l
o
g
(
1
+
e
y
e
y
)
⇒
y
=
l
o
g
(
s
in
x
(
1
+
e
y
)
c
e
y
)
⇒
e
y
=
s
in
x
(
1
+
e
y
)
c
e
y
⇒
c
=
s
in
x
(
1
+
e
y
)