dxdy=x+yx−y=1+y/x1−y/x…(i)
Since, it is a homogeneous differential equation,
Put y=vx ⇒dxdy=v+xdxdv
Hence, eq. (i) becomes v+xdxdv=1+v1−v ⇒xdxdv=1+v1−v−v ⇒xdxdv=1+v1−2v−v2 ⇒xdx=2−1(1−2v−v2−2−2v)dv
On integration, we get ∫x1dx=2−1∫1−2v−v2−2−2vdv ⇒logc1−2logx=log(1−2v−v2) ⇒logx2c1=log(x2x2−2yx−y2) ⇒x2−2yx−y2=c1 ⇒x2−2yx−y2+c=0(c=−c1)