Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of differential equation (d y/d x)-(1/x)+ey ⋅ x=0, y(1)=0
Q. The solution of differential equation
d
x
d
y
−
x
1
+
e
y
⋅
x
=
0
,
y
(
1
)
=
0
324
115
Differential Equations
Report Error
A
e
y
(
x
3
+
3
)
=
4
x
B
e
y
(
x
3
+
2
)
=
3
x
C
e
y
(
x
2
+
2
)
=
3
x
D
e
y
(
x
2
+
3
)
=
4
x
Solution:
d
x
d
y
−
x
1
=
−
e
y
x
⇒
e
−
y
d
x
d
y
−
x
1
e
−
y
=
−
x
put
e
−
y
=
z
⇒
d
x
d
z
+
x
1
⋅
z
=
x
I.F.
=
x
solution
z
⋅
x
=
∫
x
2
d
x
+
C
⇒
z
x
=
3
x
3
+
c
e
−
y
⋅
x
=
3
x
3
+
c
e
0
⋅
1
=
3
1
+
C
⇒
C
=
3
2
e
−
y
⋅
x
=
3
x
3
+
3
2
⇒
3
⋅
e
−
y
x
=
x
3
+
2
3
x
=
(
x
3
+
2
)
e
y