We have, dxdy+x1=x2ey ⇒e−ydxdy+x1e−y=x21
Put e−y=v ⇒−e−ydxdy=dxdv ∴dxdv−x1v=x2−1
Here, above equation is a linear differential equation in v. ∴IF=e∫−x1dx=e−logx=X1
Hence, the required solution is v⋅(x1)=∫x2−1⋅x1dx+C1 ⇒XV=2x21+C1 ⇒XV=2x21+2x2C1 ⇒2xv=1+Cx2[∵2C1=C] ⇒2xe−y=1+Cx2[∵v=e−y] ⇒2x=(1+Cx2)ey