If (D2 + 16)y = cos 4x
Here the auxiliary equation is m2 + 16 = 0 ⇒ m = ± 4 ∴ Complementary function
= (A cos 4x + B sin 4x)
& Particular Integral (P.I.) =D2+161.cos4x
But D2+a21cosax=2axsinax ∴P.I.=2×4x.sin4x=8xsin4x ∴ Solution y = Complementary function + Particular Integral ⇒ y = A cos 4x + B sin 4x + 8xsin 4 x